287 research outputs found

    Leadership succession in family businesses of Iran

    Get PDF

    Superoxide Dismutase (SOD) Enzyme Activity Assay in Fasciola spp. Parasites and Liver Tissue Extract

    Get PDF
    Background: The purpose of this comparative study was to detect superoxide dismutase (SOD) activities in Fasciola hepatica, F. gigantica parasites, infected and healthy liver tissues in order to determine of species effects and liver infection on SODs activity level.Methods: Fasciola spp. parasites and sheep liver tissues (healthy and infected liver tissues), 10 samples for each, were collected, homogenized and investigated for protein measurement, protein detection and SOD enzyme activity assay. Protein concentration was measured by Bradford method and SODs band protein was detected on SDS-PAGE. SODs activity was determined by iodonitrotetrazolium chloride, INT, and xanthine substrates. Independent samples t-test was conducted for analysis of SODs activities difference.Results: Protein concentration means were detected for F. hepatica 1.3 mg/ ml, F. gigantica 2.9 mg/ml, healthy liver tissue 5.5 mg/ml and infected liver tissue 1.6 mg/ml (with similar weight sample mass). Specific enzyme activities in the samples were obtained 0.58, 0.57, 0.51, 1.43 U/mg for F. hepatica, F. gigantica, healthy liver and infected liver respectively. Gel electrophoresis of Fasciola spp. and sheep liver tissue extracts revealed a band protein with MW of 60 kDa. The statistical analysis revealed significant difference between SOD activities of Fasciola species and also between SOD activity of liver tissues (P<.05).Conclusion: Fasciola species and liver infection are effective causes on SOD enzyme activity level

    fMRI of Simultaneous Interpretation Reveals the Neural Basis of Extreme Language Control

    Get PDF
    We used functional magnetic resonance imaging (fMRI) to examine the neural basis of extreme multilingual language control in a group of 50 multilingual participants. Comparing brain responses arising during simultaneous interpretation (SI) with those arising during simultaneous repetition revealed activation of regions known to be involved in speech perception and production, alongside a network incorporating the caudate nucleus that is known to be implicated in domain-general cognitive control. The similarity between the networks underlying bilingual language control and general executive control supports the notion that the frequently reported bilingual advantage on executive tasks stems from the day-to-day demands of language control in the multilingual brain. We examined neural correlates of the management of simultaneity by correlating brain activity during interpretation with the duration of simultaneous speaking and hearing. This analysis showed significant modulation of the putamen by the duration of simultaneity. Our findings suggest that, during SI, the caudate nucleus is implicated in the overarching selection and control of the lexico-semantic system, while the putamen is implicated in ongoing control of language output. These findings provide the first clear dissociation of specific dorsal striatum structures in polyglot language control, roles that are consistent with previously described involvement of these regions in nonlinguistic executive contro

    Using BOLD-fMRI to Compute the Respiration Volume per Time (RTV) and Respiration Variation (RV) with Convolutional Neural Networks (CNN) in the Human Connectome Development Cohort

    Full text link
    In many fMRI studies, respiratory signals are unavailable or do not have acceptable quality. Consequently, the direct removal of low-frequency respiratory variations from BOLD signals is not possible. This study proposes a one-dimensional CNN model for reconstruction of two respiratory measures, RV and RVT. Results show that a CNN can capture informative features from resting BOLD signals and reconstruct realistic RV and RVT timeseries. It is expected that application of the proposed method will lower the cost of fMRI studies, reduce complexity, and decrease the burden on participants as they will not be required to wear a respiratory bellows.Comment: 6 pages, 5 figure

    Thalamic volume and functional connectivity are associated with nicotine dependence severity and craving

    Full text link
    Tobacco smoking is associated with deleterious health outcomes. Most smokers want to quit smoking, yet relapse rates are high. Understanding neural differences associated with tobacco use may help generate novel treatment options. Several animal studies have recently highlighted the central role of the thalamus in substance use disorders, but this research focus has been understudied in human smokers. Here, we investigated associations between structural and functional magnetic resonance imaging measures of the thalamus and its subnuclei to distinct smoking characteristics. We acquired anatomical scans of 32 smokers as well as functional resting-state scans before and after a cue-reactivity task. Thalamic functional connectivity was associated with craving and dependence severity, whereas the volume of the thalamus was associated with dependence severity only. Craving, which fluctuates rapidly, was best characterized by differences in brain function, whereas the rather persistent syndrome of dependence severity was associated with both brain structural differences and function. Our study supports the notion that functional versus structural measures tend to be associated with behavioral measures that evolve at faster versus slower temporal scales, respectively. It confirms the importance of the thalamus to understand mechanisms of addiction and highlights it as a potential target for brain-based interventions to support smoking cessation, such as brain stimulation and neurofeedback

    N�89 and C�274 Truncated Enzymes of Chondroitinase ABC I Regain More Imperturbable Microenvironments Around Structural Components in Comparison to their Wild Type

    Get PDF
    Immune response stimulation and inactivation of chondroitinase ABC I in physiological condition have been limited its use in various clinical conditions as a bacterial enzyme drug. In the present study, we have investigated some structural and functional features of N�89, C�274 and N�89C�274; three designed truncated cABC I, in order to clarify the unclear role of two terminal parts of cABC I i.e., the 1�89 and 747�1021 amino acids sequences of the full length enzyme through truncation. As a result, the numbers of potential epitopes, the susceptibility to trypsin digestion, ANS fluorescence spectra, and fluorescence quenching using KI and acrylamide were diminished for N�89 and C�274 in comparison to the wild type. Secondary and tertiary structure investigation for N�89 and C�274 revealed that the intrinsic fluorescence was increased and Far-UV CD spectra were changed accordingly. Relative to the wild type enzyme, 0.164, 0.195 remaining activity and lack of activity was shown with the zymographic assay for N�89, C�274 and N�89C�274 variants, respectively. The diminished enzyme activity and structural changes suggested a reorientation of microenvironments interactions including cation�� interactions around structural elements toward lowering regional mobility. Constructing applicable truncated cABC I with improved features could be regarded as a strategy to regain new possible functional advantages over the full length enzyme. © 2019, Springer Science+Business Media, LLC, part of Springer Nature

    Detection of inter-hemispheric functional connectivity in motor cortex with coherence analysis

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) is showing promise as an alternate method to fMRI for studying cortical function. Resting state studies in both methods are showing functional linkages. The strength of functional connections is typically quantified by the level of significance of the temporal synchrony between brain regions, termed resting-state functional connectivity. Coherence analysis of resting state allows for phase insensitive and frequency specific analysis. This paper provides a detailed method for undertaking fNIRS in combination with resting-state coherence analysis. We show that maps of inter-hemispheric resting-state functional connectivity between the motor cortices can be reliably generated, and the frequency responses (to 50 Hz) for both oxy- and deoxyhemoglobin. Frequencies of 0-0.1 Hz provide robust data as have been shown previously. Higher frequencies (up to 5 Hz) also exhibit high coherence. Deoxyhemoglobin also shows high coherence above 10Hz. Coherence is similar during both resting and task activated states. fNIRS allows for mapping cortical function and, in combination with coherence analysis, allows one to study variations in frequency response

    Structural MRI studies of language function in the undamaged brain

    Get PDF
    In recent years, the demonstration that structural changes can occur in the human brain beyond those associated with development, ageing and neuropathology has revealed a new approach to studying the neural basis of behaviour. In this review paper, we focus on structural imaging studies of language that have utilised behavioural measures in order to investigate the neural correlates of language skills in the undamaged brain. We report studies that have used two different techniques: voxel-based morphometry of whole brain grey or white matter images and diffusion tensor imaging. At present, there are relatively few structural imaging studies of language. We group them into those that investigated (1) the perception of novel speech sounds, (2) the links between speech sounds and their meaning, (3) speech production, and (4) reading. We highlight the validity of the findings by comparing the results to those from functional imaging studies. Finally, we conclude by summarising the novel contribution of these studies to date and potential directions for future research
    corecore